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ABSTRACT

A Fourier method is combined with a mesoscale model to simulate mountain waves. The mesoscale
model describes the nonlinear low-level flow and predicts the emerging wave field above the mountain. This
solution serves as the lower boundary condition for the Fourier method, which follows the waves upward
to much higher altitudes and downward to the ground to examine parameterizations for the orography and
the lower boundary condition. A high-drag case with a Froude number of 2⁄3 is presented.

1. Introduction

The Fourier method and the mesoscale model have
long been used separately to study mountain waves
(Baines 1995). The Fourier method describes only lin-
ear processes, including refraction by a vertically vary-
ing background, three-dimensional dispersion, and dif-
fraction near caustics. Certain nonlinear processes, such
as wave breaking or saturation, can be parameterized
to some extent in a linear framework (e.g., Fritts et al.
2006), as they are for the linear parameterizations of
subgrid-scale orographic gravity wave drag (OGWD) in
climate and weather models (Kim et al. 2003). The me-
soscale model, on the other hand, describes the full
nonlinear response to flow over orography, including
wave–wave interactions and such low-level effects as
flow blocking, flow separation, and vortex shedding
(e.g., Doyle et al. 2000).

An advantage of the Fourier method is that it is much
faster computationally than the mesoscale model, even
when run at better resolution, over broader domains,
and to higher altitudes. There is also an interpretative

advantage, since parts of the mountain-wave spectrum
can be isolated in the Fourier method and studied in-
dependently for their contribution to the overall wave
field. Waves that are vertically trapped, vertically
propagating, approaching critical layers, or tunneling
through wind jets can be identified and separately ana-
lyzed (e.g., Eckermann et al. 2006b).

In this paper, we examine a way to use the Fourier
method in situations in which the low-level flow and
orographic forcing are nonlinear. The calculation is
split up so that the mesoscale model simulates only the
near-surface flow and the quasi-stationary waves that
emerge immediately above the mountain. Since this re-
quires shorter time integrations over a limited height
range, the resulting computational savings can be in-
vested in high-resolution simulations that better cap-
ture the full spectrum of relevant dynamics near the
mountain. The computationally faster Fourier method
then propagates the mountain waves upward to higher
altitudes. We are assuming that at some height just
above the mountain, the mesoscale model solution is
dominated by quasi-linear, quasi-stationary, upward-
propagating mountain waves. This solution serves as
the lower boundary condition for the Fourier method.
The approach is depicted schematically in Fig. 1.

In this initial investigation, we keep things simple and
consider an example with a uniform background. The
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example has a Froude number of 2⁄3 and was studied
numerically by Schär and Durran (1997).

At Froude numbers below unity, the linearized lower
boundary condition commonly used in the Fourier
method is inappropriate. This is because the stream-
lines near the ground tend to pass around a three-
dimensional mountain or are blocked upstream by a
two-dimensional mountain. Only at higher levels does
the flow pass over the mountain to generate waves, and
thus only some fraction of the total pressure drag across
the mountain translates into a gravity wave response.
The linearized lower boundary condition translates all
of the pressure drag into a gravity wave response.

There are modifications of the linearized lower
boundary condition that attempt to partition the total
pressure drag into components due to low-level block-
ing/vortices and mountain waves. These are used in pa-
rameterizations of OGWD and in mountain-wave fore-
casting models (e.g., McFarlane 1987; Scinocca and Mc-
Farlane 2000; Webster et al. 2003; Eckermann et al.
2006a). It is unclear how (or even if) one can improve
these parameterizations by further refinements to the
linearized lower boundary condition. This is an impor-
tant practical issue to resolve, for which the present
approach might be of some use. The Fourier method
can propagate the mountain waves back down to the
surface from the height of initialization by the meso-
scale model to infer the effective “wave orography”
responsible for forcing the emergent wave fields under
the assumptions of linear forcing and linear propaga-
tion. Such experiments might provide valuable objec-
tive information for improving subgrid-scale linear
OGWD parameterizations and OGW forcing algo-

rithms at moderate to low Froude number. Here we
infer the wave orography for the problem of Schär and
Durran (1997).

2. Model experiments

a. Problem

Following Schär and Durran (1997), we consider a
uniform (unsheared) flow impinging upon a three-
dimensional mountain of the form

h�x, y� � hma3��x2 � y2 � a2�3�2, �1�

where (x, y) are the horizontal Cartesian coordinates.
We set the mountain width a � 10 km and the maxi-
mum height hm � 1.5 km. The Froude number is de-
fined as

Fr � U�Nhm , �2�

where U is the horizontal wind speed and N is the buoy-
ancy frequency. As in Schär and Durran (1997), we
choose U � 10 m s�1, directed along the x axis, and
N � 0.01 s�1, so that Fr � 2⁄3.

Schär and Durran (1997) also performed two experi-
ments with hm � 3 km (Fr � 1⁄3). While we modeled all
three experiments with similar success using our ap-
proach, we report results only for Fr � 2⁄3.

b. Mesoscale model

We use version 2.2 of the Weather Research and
Forecasting Model (WRF) described in Skamarock et
al. (2005). The model is compressible, with fifth-/third-
order finite differences for the horizontal/vertical ad-
vection, and third-order Runge–Kutta for the time step.

The computational domain is 300 km � 300 km in the
horizontal, with a horizontal grid spacing of 1 km and
radiative lateral boundary conditions. The lower
boundary is free-slip. The vertical grid spacing in-
creases gradually from about 100 m at the ground to
about 200 m at z � 15 km. The upper boundary is a
rigid lid at z � 30 km, but for z � 15–30 km we impose
vertically increasing Rayleigh damping as a sponge
layer. There are 150 vertical grid points, of which 23 are
in the sponge layer. Turbulent kinetic energy (TKE) is
calculated prognostically, as part of a 1.5-order turbu-
lent closure scheme. (A first-order closure scheme pro-
duced a similar wave field.) The model was run dry
using the constant background wind and stratification
as the initial condition.

c. Fourier method

In the Fourier method, the vertical velocity w is
given by

FIG. 1. A mesoscale model simulates the nonlinear near-surface
flow and predicts a vertical velocity wM(x, y, z) that is used to
initialize the Fourier method at height zi. The Fourier method
propagates the waves upward to higher altitudes and downward to
the dividing streamline height zc to find the wave orography hw.
See text for notation.
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w�x, y, z� � �
��

� �
��

�

w̃�k, l, z� exp�i�kx � ly�� dk dl,

�3�

where, in a uniform background,

w̃�k, l, z� � ���zi����z��1�2w̃0�k, l� exp�im�z � zi��.

�4�

This includes an anelastic scaling by the inverse square
root of the mean density 	. The vertical wavenumber m
satisfies the gravity wave dispersion relation

m2 � �k2 � l2��N2��̂2 � 1�, �5�

where k and l are the horizontal wavenumber compo-
nents. The waves have upwind phase propagation (k 

0) and upward group propagation (m 
 0). We omit
compressibility and anelastic terms from (5), since tests
with these terms retained reveal no significant differ-
ence to the results given below. We consider stationary
waves only, so the intrinsic frequency �̂ � �kU. The
effects of wave transience have been included by the
method of Broutman et al. (2006).

At Froude numbers that are greater than unity, the
linearized lower boundary condition is often used: �(x,
y, zi) � h(x, y), where � is the vertical displacement of
the mountain waves, and the initialization height is usu-
ally taken to be zi � 0. In converting to w, this becomes
w(x, y, zi) � Uhx(x, y), or in Fourier space,

w̃�k, l, zi� � �i�̂h̃�k, l�, �6�

where h̃(k, l) is the Fourier transform of h(x, y).
For Froude numbers of less than unity, the linearized

lower boundary condition (6) fails by incorrectly assign-
ing all the pressure drag across the mountain to the
waves. One approach to correcting (6) involves the di-
viding streamline, defined as the upstream height zds

that separates flow around the mountain (z 
 zds) from
flow over the mountain (z  zds). A simple calculation,
shown schematically in Fig. 1, associates zds with the
altitude zc where the reduced or clipped (from below)
mountain height hm � zc yields a Froude number
N/U(hm � zc) equal to unity. For constant U and N, this
gives

zc � �1 � Fr�hm , �7�

an expression identical to the Sheppard criterion used
as a rough guide for locating dividing streamlines in
numerical model and tank experiments (e.g., Snyder et
al. 1985; Baines and Smith 1993). In our problem, zc �
500 m.

This in turn suggests using a linearized boundary con-

dition at zi � zc that retains only the clipped part of the
mountain that rises above zc. If one defines

hc�x, y� � max�h�x, y�, zc� �8�

to be this clipped topography above zc, the modified
lower boundary condition for moderate to low Froude
number flow is then

w̃�k, l, zc� � �i�̂h̃c�k, l�. �9�

Here h̃c(k, l) is the Fourier transform of hc(x, y). The
use of clipped orography to initialize a linear gravity
wave model is built into a number of subgrid-scale
OGWD parameterizations (e.g., McFarlane 1987; Sci-
nocca and McFarlane 2000; Webster et al. 2003) as well
as the ray-based mountain-wave forecasting model of
Eckermann et al. (2006a).

A third way to initialize the Fourier method is with
the mesoscale model solution. We choose an initializa-
tion height zi just above the major nonlinearities in the
low-level orographic flow. We initialize at a sufficiently
long time ti that the mesoscale model’s vertical velocity,
wM(x, y, zi, ti), is dominated by a steady-state mountain-
wave response. We use vertical velocity since its vari-
ance should be dominated by gravity waves rather than
by larger-scale quasi-horizontal motions (e.g., Wor-
thington and Thomas 1998). This lower boundary con-
dition is then

w̃�k, l, zi� � w̃M�k, l, zi, ti�, �10�

where w̃M is the Fourier transform of wM.

3. Results

Figure 2 shows two Fourier solutions for w at z � 14
km. The solution in the left panel is initialized with the
linearized lower boundary condition in (6), using h(x, y)
given by (1) and imposed at zi � 0. The solution in the
right panel is initialized with the modified lower bound-
ary condition in (9), using the clipped orography hc(x,
y) given by (8) and imposed at zi � zc � 500 m, the
estimated upstream height of the dividing streamline.
The solutions for w in each of these two cases have
comparable peak amplitudes, presumably because w
scales with the slope of the mountain, and the maxi-
mum slope is similar for the clipped and full mountains.
A calculation of the vertical displacement of the moun-
tain waves (not shown) gives peak values roughly pro-
portional to the maximum mountain height. That is, the
maximum vertical displacement for the clipped moun-
tain is about 2⁄3 of the maximum value for the full moun-
tain.

To initialize the Fourier method with the WRF
model, we choose an initialization time ti of 6 h. A time
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of 3 h would have sufficed for the initialization itself,
but the longer time allowed the WRF wave fields to
propagate to higher altitudes where they could be com-
pared with the Fourier solution.

To set zi we examine the WRF TKE fields (see sec-
tion 2b). WRF generated significant TKE at heights
below about 4 km (see Fig. 3), along with an associated
unstable potential temperature gradient. Such TKE
values are indicative of wave breaking and were noted
by Schär and Durran (1997, see their Fig. 3c). We thus
choose zi � 5 km. The WRF solution wM(x, y, zi, ti) at
zi � 5 km and ti � 6 h is plotted in Fig. 4. This is the
lower boundary condition for the Fourier method.

The WRF solution wM(x, y, z, ti) at z � 14 km is
shown in the left panel of Fig. 5. The right panel shows
the corresponding Fourier solution initialized by the
WRF solution in Fig. 4. Corresponding vertical cross
sections at y � 0 are plotted in Fig. 6 for the WRF
solution (left panel) and for the WRF-initialized Fou-
rier solution (right panel). These results reveal good
overall agreement, indicating that the WRF initializa-
tion provides a much better reproduction of the wave
field, in amplitude and spatial extent, than the linear
solutions of Fig. 2. Despite the low-level turbulent dis-
sipation in the WRF simulation (see Fig. 3), the waves
emerge with larger amplitude than in the linear cases of
Fig. 2.

The WRF initialization at zi � 5 km can also be used
to calculate the Fourier solution at heights below zi.
The right panel of Fig. 6 shows the result of extending
the Fourier solution to both higher and lower altitudes.
The point of the calculation at lower altitudes is to infer
the wave orography hw consistent with linear boundary

forcing of the waves observed in the WRF simulation. If
the dividing streamline idea were accurate, the Fourier
solution initialized by WRF at height zi and then prop-
agated downward to height zc should yield an estimate
of hw that resembles the clipped orography hc used in
(8). Since at z � 14 km, the Fourier solution initialized
using hc differs from the WRF solutions (c.f. Figs. 2 and
5), this suggests that hw should differ from hc.

To test this, we estimate

hw�x, y� � ��x, y, zc� � zc, �11�

FIG. 3. The WRF solution for TKE (shaded contours) at y � 0.
Values range from 0 to 5.8 m2 s�2, with a contour interval of
1 m2 s�2. Thick solid lines show the isentropes from the WRF
solution, starting at 294 K and increasing in intervals of 4 K with
height. The dashed line at z � 5 km indicates the initialization
height zi for the Fourier method.

FIG. 2. (left) The Fourier solution for w at z � 14 km initialized with the linearized lower boundary condition in (6). Values range
from �1.21 to 0.95 m s�1. (right) The Fourier solution initialized by the dividing streamline method in (9). Values range from �1.28
to 1.04 m s�1. The contour interval in both plots is 0.3 m s�1. Here and in subsequent figures the shaded contours have positive values
and the zero contour is omitted.
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where � is the WRF-initialized Fourier solution for ver-
tical displacement evaluated at the estimated height
zc � 500 m of the upstream dividing streamline.

Contour plots of hw(x, y) and hc(x, y) are shown in
the left and right panels of Fig. 7, respectively. A one-
dimensional slice through these topographies at the
centerline y � 0 is shown in the left panel of Fig. 8. We
see particularly from Fig. 8 that, on the upstream side of

the topography, hw and hc have similar shape and
height, although hw is slightly taller and somewhat
wider at its base.

On the downstream side, hw differs noticeably from
both hc and h, dropping rapidly from its peak value and
then oscillating a couple of times about a height of
�500 m. The nonlinearity of the low-level flow down-
stream of the obstacle is the likely origin of this shape.

FIG. 5. The solution for w at z � 14 km computed by the (left) WRF model and (right) Fourier method. The Fourier solution is
initialized at zi � 5 km with the WRF solution of Fig. 4. Values range from �1.50 to 1.87 m s�1 for the WRF model and from �1.41
to 1.95 m s�1 for the Fourier solution. The contour interval is 0.3 m s�1.

FIG. 4. The WRF solution for w at z � 5 km, used as the lower boundary condition for the
Fourier method. Values range from �2.65 to 1.82 m s�1, with contour interval 0.3 m s�1.
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For example, in the WRF simulations the streamlines
passing over the mountain are not symmetric about x �
0, but exhibit a steep drop in the lee that triggers a
leeside surface wind maximum and the TKE shown in
Fig. 3 here and in Fig. 3c of Schär and Durran (1997).
To the Fourier model, such distortions act as a modifi-
cation to the effective obstacle shape, which is re-
flected in the hw fields recovered from the backtraced
Fourier solutions in Figs. 7 and 8.

To study this further, the corresponding amplitude
spectra of h, hc, and hw are shown in the right panel of
Fig. 8. These are obtained by discrete Fourier transform
of the orographic cross sections shown in the left panel.
Since the functional form of h(x, y) in (1) is smooth, its
spectrum decreases exponentially at the large mode

numbers shown in the plot. Since hc is clipped, its spec-
trum has high-mode-number Gibbs oscillations whose
amplitude decreases as the mode number to the �2
power.

The spectrum of the hw cross section vanishes
abruptly after mode number 47. These higher mode
numbers force vertically evanescent gravity waves,
whose energy is not recovered by the free downward
propagation of the Fourier solution using the zi � 5 km
WRF solution. Mode 47 corresponds to a cutoff wave-
length of about 6.4 km, and this corresponds to the
scale of the short oscillations in hw seen in the left panel
of Fig. 8. At mode numbers �20–47 (wavelengths �6–
15 km), the spectrum for hw is enhanced relative to the
spectra for h and hc. The enhanced variance at these

FIG. 7. (left) The Fourier solution in (11) for the wave orography hw at the height of the dividing streamline, 500
m. Values range from 44 to 1799 m, and shaded contours represent heights above 500 m. (right) The clipped
topography hc. Values range from 500 to 1500 m. The contour interval in both plots is 150 m.

FIG. 6. (left) The WRF solution for w at y � 0, the centerline of the mountain. Dashed lines indicate the initialization height for the
Fourier method (zi � 5 km) and the height at which the WRF and Fourier solutions are compared in Fig. 5 (z � 14 km). The contour
interval is 0.3 m s�1. The sponge layer begins at 15 km. (right) The corresponding Fourier solution.
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scales in the hw spectrum is apparent in wave structure
of similar horizontal scales in the wave field solutions in
Figs. 5 and 6. We also calculated the wave orography hw

at z � 0 and z � 1000 m and found similar features.

4. Summary

We considered mountain waves generated by a
three-dimensional mountain for a Froude number of 2⁄3.
The Fourier solution with the linearized lower bound-
ary condition for orographic forcing did not accurately
describe the wave field predicted by a nonlinear meso-
scale model. When initialized instead with the meso-
scale model solution at a single height above the major
nonlinearity in the low-level flow, the Fourier method
reproduced the mountain waves much more accurately.
The Fourier method initialized in this way can also
propagate the wave field from the initialization height
back down toward the ground, as we have done to pro-
duce Figs. 6–8. The purpose of this is to help to deter-
mine a parameterized orography and lower boundary
condition consistent with the wave field at higher alti-
tudes and the linearized equations for wave propaga-
tion. Subgrid-scale OGWD parameterizations in global
weather and climate models use this kind of approach
(e.g., Scinocca and McFarlane 2000; Webster et al.
2003), as does the ray-based mountain-wave forecast
model of Eckermann et al. (2006a).

We calculated the mesoscale model solution up to a
height of 15 km, with a 15-km sponge layer above that.
This height range was chosen to demonstrate good
agreement with the Fourier solution. If we had needed
the mesoscale model only to initialize the Fourier so-
lution, we could have used a somewhat shallower do-

main. Note that Schär and Durran (1997), whose low-
level results we have reproduced, simulated this case
with a model height of only 12 km (and a radiation
condition at 12 km). In another example that might be
suitable for our approach, Lane et al. (2006) simulated
winds over the island of Kauai with a model that ex-
tended only 10 km high (with an 8-km sponge layer
above that).

The results here suggest that our method has poten-
tial for efficiently propagating high-resolution tropo-
spheric mountain-wave fields to much higher altitudes
(e.g., into the stratosphere and mesosphere) and into
much broader horizontal domains. Realistic winds and
stratification can be handled as in Eckermann et al.
(2006b). However, the wave field can become nonlinear
as it propagates upward, and a parameterization for
wave breaking will be need to be implemented.

While we have focused on mountain-wave problems,
the method can potentially be extended to other
sources of gravity waves. The complexity of wave gen-
eration by convection and jet stream imbalance, for
instance, often requires mesoscale model simulations.
Several studies have spectrally analyzed the output of
such simulations to characterize the amplitudes, wave-
lengths, and phase speeds of the gravity waves radiating
away from these sources, and then have propagated
these wave groups to higher altitudes using spatial ray
methods (e.g., Alexander 1996; Vadas and Fritts 2004;
Plougonven and Snyder 2005). Other studies have
backtraced model-generated wave groups at higher al-
titudes to infer the altitude, location, and overall nature
of the source (e.g., Reeder and Griffiths 1996; Lin and
Zhang 2008). Since the ray method can be formulated
in Fourier space (Broutman et al. 2003, 2006), our work

FIG. 8. (left) The wave orography hw of Fig. 7 along the centerline y � 0, indicated by the thick line. Also plotted are h of (1) and
hc of (8). (right) The amplitude spectrum for each curve in the left panel. Mode number 1 refers to a wavelength of 300 km.
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may provide the basis for a systematic approach to
these kinds of studies.
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